specifications, the program manager must transfer to the purchaser, at the time of the sale, the following records of that aircraft, in plain language form or in coded form that provides for the preservation and retrieval of information in a manner acceptable to the Administrator: - (a) The records specified in §91.1439(a)(2). - records (b) The specified §91.1439(a)(1) that are not included in the records covered by paragraph (a) of this section, except that the purchaser may allow the program manager to keep physical custody of such records. However, custody of records by the program manager does not relieve the purchaser of its responsibility under §91.1439(c) to make the records available for inspection by the Administrator or any representative of the National Transportation Safety Board. # §91.1443 CAMP: Airworthiness release or aircraft maintenance log entry. - (a) No program aircraft maintained under a CAMP may be operated after maintenance, preventive maintenance, or alterations are performed unless qualified, certificated personnel employed by the program manager prepare, or cause the person with whom the program manager arranges for the performance of the maintenance, preventive maintenance, or alterations, to prepare— - (1) An airworthiness release; or - (2) An appropriate entry in the aircraft maintenance log. - (b) The airworthiness release or log entry required by paragraph (a) of this section must— - (1) Be prepared in accordance with the procedure in the program manager's manual; - (2) Include a certification that— - (i) The work was performed in accordance with the requirements of the program manager's manual; - (ii) All items required to be inspected were inspected by an authorized person who determined that the work was satisfactorily completed: - (iii) No known condition exists that would make the aircraft unairworthy; - (iv) So far as the work performed is concerned, the aircraft is in condition for safe operation; and - (3) Be signed by an authorized certificated mechanic. - (c) Notwithstanding paragraph (b)(3) of this section, after maintenance, preventive maintenance, or alterations performed by a repair station certificated under the provisions of part 145 of this chapter, the approval for return to service or log entry required by paragraph (a) of this section may be signed by a person authorized by that repair station. - (d) Instead of restating each of the conditions of the certification required by paragraph (b) of this section, the program manager may state in its manual that the signature of an authorized certificated mechanic or repairman constitutes that certification. ### Subpart L—Continued Airworthiness and Safety Improvements SOURCE: Amdt. 91–297, 72 FR 63410, Nov. 8, 2007, unless otherwise noted. ### §91.1501 Purpose and definition. - (a) This subpart requires operators to support the continued airworthiness of each airplane. These requirements may include, but are not limited to, revising the inspection program, incorporating design changes, and incorporating revisions to Instructions for Continued Airworthiness. - (b) For purposes of this subpart, the "FAA Oversight Office" is the aircraft certification office or office of the Transport Airplane Directorate with oversight responsibility for the relevant type certificate or supplemental type certificate, as determined by the Administrator. #### § 91.1503 [Reserved] # §91.1505 Repairs assessment for pressurized fuselages. (a) No person may operate an Airbus Model A300 (excluding the -600 series), British Aerospace Model BAC 1-11, Boeing Model, 707, 720, 727, 737 or 747, McDonnell Douglas Model DC-8, DC-9/MD-80 or DC-10, Fokker Model F28, or Lockheed Model L-1011 airplane beyond applicable flight cycle implementation time specified below, or May 25, 2001, whichever occurs later, unless repair #### §91.1507 assessment guidelines applicable to the fuselage pressure boundary (fuselage skin, door skin, and bulkhead webs) that have been approved by the FAA Aircraft Certification Office (ACO), or office of the Transport Airplane Directorate, having cognizance over the type certificate for the affected airplane are incorporated within its inspection program: - (1) For the Airbus Model A300 (excluding the -600 series), the flight cycle implementation time is: - (i) Model B2: 36,000 flights. - (ii) Model B4-100 (including Model B4-2C): 30,000 flights above the window line, and 36,000 flights below the window line. - (iii) Model B4–200: 25,500 flights above the window line, and 34,000 flights below the window line. - (2) For all models of the British Aerospace BAC 1–11, the flight cycle implementation time is 60,000 flights. - (3) For all models of the Boeing 707, the flight cycle implementation time is 15,000 flights. - (4) For all models of the Boeing 720, the flight cycle implementation time is 23,000 flights. - (5) For all models of the Boeing 727, the flight cycle implementation time is 45,000 flights. - (6) For all models of the Boeing 737, the flight cycle implementation time is 60,000 flights. - (7) For all models of the Boeing 747, the flight cycle implementation time is 15,000 flights. - (8) For all models of the McDonnell Douglas DC-8, the flight cycle implementation time is 30,000 flights. - (9) For all models of the McDonnell Douglas DC-9/MD-80, the flight cycle implementation time is 60,000 flights. - (10) For all models of the McDonnell Douglas DC-10, the flight cycle implementation time is 30,000 flights. - (11) For all models of the Lockheed L-1011, the flight cycle implementation time is 27,000 flights. - (12) For the Fokker F–28 Mark 1000, 2000, 3000, and 4000, the flight cycle implementation time is 60,000 flights. #### (b) [Reserved] [Doc. No. 29104, 65 FR 24125, Apr. 25, 2000; 65 FR 35703, June 5, 2000; 65 FR 50744, Aug. 21, 2000, as amended by Amdt. 91–266, 66 FR 23130, May 7, 2001; Amdt. 91–277, 67 FR 72834, Dec. 9, 2002; Amdt. 91–283, 69 FR 45941, July 30, 2004. Redesignated and amended by Amdt. 91–297, 72 FR 63410, Nov. 8, 2007] # §91.1507 Fuel tank system inspection program. - (a) Except as provided in paragraph (g) of this section, this section applies to transport category, turbine-powered airplanes with a type certificate issued after January 1, 1958, that, as a result of original type certification or later increase in capacity, have— - (1) A maximum type-certificated passenger capacity of 30 or more, or - (2) A maximum payload capacity of 7,500 pounds or more. - (b) For each airplane on which an auxiliary fuel tank is installed under a field approval, before June 16, 2008, the operator must submit to the FAA Oversight Office proposed maintenance instructions for the tank that meet the requirements of Special Federal Aviation Regulation No. 88 (SFAR 88) of this chapter. - (c) After December 16, 2008, no operator may operate an airplane identified in paragraph (a) of this section unless the inspection program for that airplane has been revised to include applicable inspections, procedures, and limitations for fuel tank systems. - (d) The proposed fuel tank system inspection program revisions specified in paragraph (c) of this section must be based on fuel tank system Instructions for Continued Airworthiness (ICA) that have been developed in accordance with the applicable provisions of SFAR 88 of this chapter or §25.1529 and part 25, Appendix H, of this chapter, in effect on June 6, 2001 (including those developed for auxiliary fuel tanks, if any, installed under supplemental type certificates or other design approval) and that have been approved by the FAA Oversight Office. - (e) After December 16, 2008, before returning an airplane to service after any alterations for which fuel tank ICA are developed under SFAR 88, or under §25.1529 in effect on June 6, 2001, the operator must include in the inspection